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Integral flow properties of the swash zone and
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Shoreline boundary conditions for nearshore hydrodynamic models are discussed
on the basis of the swash zone equations of Brocchini & Peregrine (1996). Swash
zone flows are investigated further using the shallow water equations. Results from
numerical computations are used to guide approximation to provide more practical
boundary conditions for wave-averaged flows. Approximate boundary conditions,
valid for small values of the rate of change of the mean water volume in the swash
zone, are found which allow explicit computation of a non-zero mean water depth at
the mean shoreline. This is computed in terms of the local height of the short waves.
Implementation issues are also discussed.

1. Introduction
Nearshore water flows occur over a wide range of time scales. Because of this

complexity averaging over the typical period of wind waves (about 100–101 s) is
often introduced. The simplest wave-averaged model, used to compute the wave
set-up, is based on the depth-integrated equations for the cross-shore flow motion
(1DH). If the flow is non-uniform in the longshore direction two types of models can
be employed: 2DH models (based on depth-integrated velocities) and quasi-three-
dimensional models.

Although well developed, wave-averaged models use some assumptions which limit
their capability of reproducing natural flow conditions. One of the most crucial
shortcomings concerns the treatment of the boundary between the wet and dry
domains. Since such a boundary is taken as the intersection of the mean water level
with the beach face both theoretical and practical problems arise. For instance, the
swash zone dynamics is not modelled and flow properties are also defined in regions
which should be dry. Moreover, at the mean shoreline the water depth is usually
taken to be zero, hence serious computational troubles are faced in prescribing the
short-wave (SW) forcing.

We aim to define suitable shoreline boundary conditions (SBCs) for wave-averaged
models and analyse in detail SBCs for one-dimensional flow propagation derived
from the boundary conditions of Brocchini & Peregrine (1996) (Part 1). We assess
validity of the SBCs by means of theoretical and numerical arguments (§ 2) and in § 3
we rewrite them in terms of flow variables used in available wave-averaged models.
We simplify them on the basis of numerical solutions of the nonlinear shallow water
equations (NSWE) and discuss their features in § 4. Section 5 is devoted to a discussion
of issues on the implementation of the SBCs and to some concluding remarks.
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2. Evaluation of the chosen SBCs
In Part 1 a detailed analysis of different definitions of mean shoreline revealed

that such a mean interface cannot be uniquely defined. It was also shown that flow
properties can be unambiguously defined within the wet region if the boundary
between wet and dry is taken as the envelope of the rundown positions. Moreover, in
view of the major problems in defining conditions at the wet–dry interface for wave-
averaged models a set of equations was proposed to be used as SBCs. These were
built on the basis of an integral model for the swash zone. The NSWE (equations
(2.4) and (4.1) of Part 1), written in terms of the total water depth d and of
the depth-independent horizontal velocity u = (ux, uy) = (u, v), are integrated over
the swash zone width, i.e. between the lower (xl) and the upper (xh) boundary of the
swash zone. This introduces both local flow properties computed at xl and integral
flow properties such as

V =

∫ xh

xl

d dx, P =

∫ xh

xl

ud dx, Υ =

∫ xh

xl

τ dx, (2.1)

which are respectively the volume of water in the swash zone, the momentum of
water in the swash zone and the seabed friction force in the swash zone. In the latter
the seabed shear stress τ can be modelled by suitable formulations, one of which is
described in the following (see equations (2.7) and (2.8)).

A Reynolds-type decomposition was used for distinguishing between short- and
long-wave properties. Hence, a generic property f is decomposed into a long-period
(〈f〉) and a short-period component as follows:

f(x, t) =

{ 〈f〉+ f̃, if x is outside the swash zone,

〈f〉+ f̂, if x is inside the swash zone.
(2.2)

The decomposition is achieved by assuming the swash motion is almost entirely
assigned to SW contributions and that the only long-wave (LW) contribution for a
1DH propagation comes from the motion of the mean shoreline, i.e. of xl:

d = d̂, u =
dxl
dt

+ û. (2.3)

Use of a different basis for SW and LW properties in the swash zone compared with
those outside the swash zone is justified in various ways (see also § 7 of Part 1) which
reflect the observation that on many sandy beaches there is a strong difference in the
character of the bed in the swash zone compared with the bed just outside the swash
zone.

In the case of 1DH flow propagation the two equations which hold at xl are those
obtained respectively from (7.10) and (7.11) of Part 1:

dxl
dt

= 〈u〉+
〈ũd̃〉 − d〈V̂ 〉/dt

〈d〉 , (2.4)

d

dt

[
〈P̂x〉+

dxl
dt
〈V̂ 〉
]

+ gα〈V̂ 〉+ 〈Υx〉 =

[
〈u〉 − dxl

dt

]2

〈d〉+ 2〈ũd̃〉
[
〈u〉 − dxl

dt

]
+〈ũ2〉〈d〉+ 〈ũ2d̃〉+

g

2
[〈d̃2〉+ 〈d〉2] (2.5)
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Figure 1. An example of solution for the case of ξm = 0.079 and f = 0. (a) Instantaneous free
surface elevation (solid line) with envelopes of maxima and minima (dashed lines), mean water level
(dash-dotted line) and wave height (double-dotted-dashed line). (b) Instantaneous velocity (solid
line), mean velocity 〈u〉 (dashed line) and mean velocity ū (dashed-dotted line) of equation (3.1). In
both panels the thick, solid line represents the seabed.

in which α is the beach slope and g the acceleration due to gravity. For more details
on the derivation of (2.4) and (2.5) please refer to Part 1.

Since we aim to show the effectiveness of (2.4) and (2.5) in providing SBCs we
analyse their behaviour by means of sample solutions of the NSWE. Such equations
are obtained by assuming that vertical flow acceleration is small compared with
gravity and no dispersive terms are included. Hence solutions for sufficiently steep
waves travelling shoreward continually steepen and eventually break. Notwithstanding
these approximations the flow motion near the shore over a sloping beach can be
successfully modelled by the NSWE (e.g. Kobayashi, Otta & Roy 1987; Watson,
Barnes & Peregrine 1994).

We resort to full numerical solutions because analytical solutions, though attractive
and useful, are not suited for describing wave breaking conditions which, on the
contrary, can be represented by numerical solutions of the NSWE. Moreover, use of
a shock-capturing solver which can deal with swash motions (e.g. Watson et al. 1994)
allows computation of both SW and LW properties in shallow enough water (see
figure 1).

In Part 1 examples were only given for a time-independent position of the lower
boundary of the swash zone, i.e. for dxl/dt = 0. We here extend our analysis to
the more complex and practically more important case of an unsteady motion of xl .
Hence the solution must involve at least two wave modes of rather different frequency.
We, thus, consider cases in which bichromatic waves and irregular waves (generated
on the basis of JONSWAP-type spectra) propagate with breaking of the SWs over
beaches of different slopes. The SW mode is characterized either by input length (at
the seaward boundary of the domain) and height (Ls,Hs) or by an input ‘significant
length’ (associated with the significant period) and a significant height (LSs , H

S
s ) and is
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superposed on the LW mode of input properties (Ll, Hl). This procedure is particularly
suited to numerical computations and allows a strict control of the properties of both
SWs and LWs. A second procedure, often used in experimental analysis, could have
been employed in which the LW is generated within the considered domain by
interaction of the SW. This, however, has one major drawback: the LW height Hl

is known with a lesser accuracy than with the former procedure, which is chosen
for clarity purposes. Also note that the chosen procedure exactly reproduces what
occurs in standard applications of wave-averaged models in which the SW field is
represented through one single mode (‘representative’ or ‘significant’ wave).

A large number of sample computations has been performed by using typical field
conditions but only results of the most representative are reported here. It is well
known that the motion of water waves on beaches can be suitably classified in terms
of the ratio between the beach slope and the square root of the wave steepness which
gives the so called ‘Iribarren number’ typically used to classify the types of breaking.
Our results show (see § 4) that the relative size of contributions to the momentum
equation strongly depends both on α and on the input steepness Hs/Ls of the SW.
A weaker influence is due to the input LW. This is suitably expressed in terms of
the input ratio Ll/Ls, the role of Hl being less important for the cases discussed
here. Hence we choose to classify our test conditions in terms of both the ‘modified
Iribarren number’

ξm =
α√

(Hs/Ls)(Ll/Ls)
(2.6)

and the dimensionless, scaled friction parameter

f = Cf/α (2.7)

used to express the seabed shear stress by a Chezy-type formulation such that

〈Υx〉 =

〈∫ xh

xl

Cf |u|u
2

dx

〉
=

〈∫ xh

xl

fα|u|u
2

dx

〉
. (2.8)

Although the Chezy friction law is widely used in parameterizing the seabed
frictional effects, the debate regarding the size of the frictional coefficients f is still
continuing. However, a simple analysis given by Watson et al. (1994) reveals a critical
value for f such that frictional effects dominate the entire domain of interest. By
writing the NSWE in a dimensionless form it is possible to show that the term
representing the seabed shear stress is proportional to f = Cf/α and that the critical
size for f relates to the beach slope. For Cf � α friction is negligible while it has a
noticeable effect for Cf ∼ α.

Experimental investigations show that the dimensionless friction coefficient Cf
ranges between 0.01 and 0.04 (e.g. Puleo & Holland 2001). Moreover experiments
with breaking waves show that for very mildly sloping beaches (α 6 0.01) breaking is
intermittent and solutions of the NSWE solver may not be adequate, hence we used
0.02 6 α 6 0.1.

For the test conditions analysed 0.02 6 ξm 6 0.40 and 0 6 f 6 1. The smallest
values of ξm characterize steep SWs and relatively long LWs while the largest values
of ξm pertain to less steep SWs superposed on relatively short LWs. Both ξm and f
vary over a range which is representative of typical wave conditions over most natural
beaches.

Results of computations illustrate a number of features of the chosen equations
and support the validity of the analytical derivation given in Part 1. We can reproduce



Integral flow properties of the swash zone and averaging. Part 2. 273

8

4

0

–4
150 200 250 300 350 400 450

x-
co

or
di

na
te

 (
m

)
(a)

(b)

(c)

0.2
0.1

0
–0.1
–0.2

0.025

0.020

0.015

0.010

0.005

150 200 250 300 350 400 450

150 200 250 300 350 400 450

(m
 s

–1
)

(m
3  

s–2
)

Time (s)

Figure 2. Results of the validation procedure for the case of irregular waves of ξm = 0.079 and
f = 0. (a) Instantaneous (solid line) and mean (dashed line) shorelines. (b, c) Left-hand side (—)
and right-hand side (• • •) of equations (2.4) and (2.5) respectively.

the position of the instantaneous shoreline and the motion of the seaward limit of the
swash zone whose envelope gives the chosen mean shoreline (see figure 2a). Moreover,
comparison of the left-hand side with the right-hand side of the model equations (see
figure 2b, c) shows it is possible to predict both the motion of xl and the water depth
at xl once the SW properties are known.

Although a good agreement exists between signals representing the left-hand side
and the right-hand side of equations (2.4) and (2.5), matching is not perfect as it
should be for conservation equations. Disagreement is due to two practical reasons.
First, the ‘operative definition’ of the lower boundary of the swash zone xl brings with
it some uncertainties caused by computing the envelope of the rundown positions.
The procedure we used is similar to that described in Shah & Kamphuis (1996) which
involves low-pass filtering of the instantaneous shoreline position. Such an operation
introduces uncertainties which become smaller and smaller on decreasing the number
of modes that make up the signal of the instantaneous shoreline. Comparisons
equivalent to that proposed in figure 2 but employing bichromatic waves give almost-
perfect visual matching. However, even in this case the matching is not exact because
of numerical errors caused by the accuracy of the numerical method and of the
discretization used.

Notice that for these tests SW properties are those derived from the computations
but to use the equations as a predictive tool we must prescribe them through a
suitable theory. We discuss this in § 5.

3. Features of the SBCs
Before discussing the features of the SBCs (2.4) and (2.5) we write them in a form

consistent with the flow description employed in available wave-averaged models.
Different definitions of mean flow variables are used in the literature dealing with
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wave-averaged models. In models like those of Özkan-Haller & Kirby (1997) and of
Van Dongeren & Svendsen (2000) the mean flow velocity, which we label as ū to
distinguish it from the mean velocity 〈u〉 used in Part 1, is defined as the time-average
of the total mass flux divided by the mean depth. On the other hand, there is no
ambiguity in the definition of the mean water depth and d̄ (the overbar is only used
for uniformity of notation) coincides with 〈d〉:

d̄ = 〈d〉, ū = 〈u〉+
〈ũd̃〉
〈d〉 . (3.1)

Moreover, it is common practice to use the following nonlinear SW variables:

〈Q̃〉 = 〈ũd̃〉 = SW mass flux, (3.2a)

〈S̃〉 = 〈ũ2〉d̄+ 〈ũ2d̃〉+
g

2
〈d̃2〉 = SW momentum flux or ‘radiation stress’. (3.2b)

Hence, substitution of (3.1) and (3.2) into both (2.4) and (2.5) gives the desired form
of the SBCs:

dxl
dt

= ū− 1

d̄

d〈V̂ 〉
dt

, (3.3)

d

dt

[
〈P̂x〉+ dxl

dt
〈V̂ 〉
]

+gα〈V̂ 〉+ 〈Υx〉=
[
ū2 +

(
dxl
dt

)2
]
d̄−2ūd̄

dxl
dt

+
1

2
gd̄2− 〈Q̃〉

d̄
+ 〈S̃〉.

(3.4)

A third equation is required for completely solving for the mean flow, i.e. determin-
ing both the motion of xl and the values of both d̄(xl) and ū(xl). This must provide
some information on what is happening inside the computational domain. Such infor-
mation is carried by the positive (incoming) Riemann variable R+ = ū+ 2

√
gd̄ which

propagates from the interior towards the shoreline along positive characteristics of
the NSWE for the mean flow (e.g. Özkan-Haller & Kirby 1997):

dR+

dt
= −gα− 1

d̄

d〈S̃〉
dx

along
dx

dt
= ū+

√
gd̄. (3.5)

Now the three equations (3.3), (3.4) and R+ = ū + 2
√
gd̄ can be solved for xl , d̄

and ū once R+ is known at xl from (3.5). They can also be simplified on the basis
of the following analyses which aims at obtaining one first set of SBCs which can be
considered as exact within the approximation of wave-averaged shallow water flows
and for beaches of natural slope.

Therefore we restrict our analysis to the case of beach slopes large enough that the
acceleration of the mean shoreline is negligible. Thus for α � (d2xl/dt

2)/g we can
neglect d2xl/dt

2 with respect to gα on the left-hand side of (3.4). Computations suggest
a maximum acceleration of the mean shoreline of about 0.001 m s−2 which is about
ten times larger than measured accelerations in the field (Guza & Thornton 1985).
For typical wave conditions this means that we restrict our attention to beaches of
slope larger than about 1 : 1000 which is almost always the case for natural beaches.
A simple manipulation gives the following form of the SBCs:

ū = R+ − 2

√
gd̄, (3.6a)

dxl
dt

= R+ − 2
√
gd̄3 + d〈V̂ 〉/dt

d̄
, (3.6b)
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gd̄3︸︷︷︸
(I)

+ 4
√
g

d〈V̂ 〉
dt

d̄3/2︸ ︷︷ ︸
(II)

− 2

[
d〈P̂x〉

dt
+ gα〈V̂ 〉+ 〈Υx〉+ R+

d〈V̂ 〉
dt
− 〈S̃〉

]
d̄︸ ︷︷ ︸

(III)

+ 4

[
d〈V̂ 〉

dt

]2

− 2〈Q̃〉2︸ ︷︷ ︸
(IV)

= 0. (3.6c)

The terms containing the four different powers of d̄ in (3.6c) have been labelled
with Roman capital figures for ease of reference in the following analyses.

Since SW properties in principle depend on LW characteristics, equation (3.6c)
cannot be solved directly. However the above set of coupled equations can be solved
by an iterative procedure: a trial solution of (3.6c) can be substituted into (3.6a)
and (3.6b) to give an approximate value of both dxl/dt and ū. A similar iterative
procedure is sometimes used in wave-averaging solvers and is found to converge
in few iterations (e.g. Haas, Svendsen & Haller 1998). However, a simpler solution
strategy is most often used which is based on the assumption of a weak dependence
of SW properties on d̄ and ū. In that case (3.6c) is an algebraic equation in d̄ and an
analytical solution for d̄ can be found. This is the approach we use in the following,
having in mind that an iterative procedure can be easily implemented once a good
trial value for d̄ is found.

Once a method is found to compute the positive Riemann variable at xl it is
possible to implement conditions (3.6) into available models like SHORECIRC
(Van Dongeren & Svendsen 2000). However, we aim at understanding properties of
conditions (3.6) and look for an approximate version of such conditions which can
lead to an analytical solution of the problem. We start by analysing the following two
special cases.
(i) The motion of a ‘rigid wall’
This case is characterized by no water in the swash zone (i.e. 〈V̂ 〉 = 0, 〈P̂x〉 = 0,
〈Υx〉 = 0) and simplifies to

dxl
dt

= ū = R+ − 2

√
gd̄, (3.7a)

gd̄3 + 2〈S̃〉d̄− 2〈Q̃〉2 = 0. (3.7b)

These conditions are those of a rigid wall moving with velocity ū (equation (3.7a))
where the water depth can change due to the change in the SW forcings 〈Q̃〉 and 〈S̃〉
of equation (3.2).

This type of condition was discussed in § 7 of Part 1 in which an indication was
also given of the treatment of SWs at the wall. SWs are perfectly reflected so that, in
the assumption that for known mean flow properties they can be suitably described
in terms of only the wave height and period, the following holds:

Hout = Hin,
1

Tout
=

1

Tin
− 2ū

Lin
, (3.8)

in which the subscripts in and out label the properties of SWs respectively incident
and reflected at the wall.
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(ii) Steady-state conditions
If steady-state conditions are assumed equation (3.6c) simplifies to

gd̄3 − 2[gα〈V̂ 〉+ 〈Υx〉 − 〈S̃〉]d̄− 2〈Q̃〉2 = 0 (3.9)

and gives a depth of equilibrium at xl for given SW properties (〈V̂ 〉, 〈Q̃〉, 〈S̃〉 and
〈Υx〉).

It is clear that cases (i) and (ii) are only useful for illustrative purposes. A more
general and useful case is described in the next section in which an approximate
version of equation (3.6c) is derived on the basis of results of numerical solutions of
the NSWE rather than on the basis of a prioristic assumptions. Hence, a large number
of solutions is used to assess the relative size of each contribution to (3.6c), which is
consequently simplified (see § 4) by retaining the leading contributions, i.e. those terms
which balance in size within the equation (terms of one order of magnitude smaller
than the leading terms, in practice less than about 10% smaller, are considered as
negligible). The aim is to show that such a simplified problem admits an analytical
solution which models well and interprets the results of full numerical solutions and
which allows a very simple formulation of the SBCs (see § 5).

4. Some approximate SBCs
These are the SBCs we suggest implementing in available wave-averaged models.

They are a slightly simplified version of (3.6) and allow both for the mean shoreline
to move (i.e. dxl/dt 6= 0) and for SW flows of mass and momentum to take place
across the boundary. The major simplification concerns the rate of change of the
mean water volume in the swash zone (d〈V̂ 〉/dt appears in various terms of both
(3.6b) and (3.6c)). This is found to contribute negligibly to the momentum balance
expressed by equation (3.6c).

We have evaluated the size of each contribution to the SBCs on the basis of sample
solutions. Analysis of the results reveals that these can be grouped into three classes
depending on the value of ξm. In each class the values of the computed results are
very similar for all properties, their variation being between 10% and 20% of the
values reported in table 1. As already mentioned in § 2 results are most sensitive to
changes of the slope of the SW, less to changes of the ratio Ll/Ls and of Hl , hence
the use of ξm of equation (2.6).

The first class (class ‘A’) is such that ξm < 0.054 and approximately corresponds
to that of ‘spilling breakers’. These waves start breaking quite far from the shoreline
and, within the NSWE scheme, are characterized by intense energy dissipation which
results in reduced swash zone amplitudes. This causes some numerical problems.
In fact, in order to adequately resolve swash zone flows, a quite fine numerical
discretization was required. If for standard NSWE computations the wavelength of
SWs is typically resolved with about 20 to 50 computational points, we had to use
up to 450 computational points per wavelength for the tests reported here.

The intermediate class ‘B’ is characterized by 0.054 6 ξm 6 0.150 and includes
waves breaking in the form of ‘plungers’. For ξm > 0.150 the SWs break very close to
the shoreline (class ‘C’).

One first important result is that regardless of the values of the wave parameters,
of α and f, the ratio |d〈V̂ 〉/dt|/|ūd̄| ranges between 0.1 and 0.5. Thus the d〈V̂ 〉/dt
contribution to the right-hand side of both (3.3) and (3.6b) must be retained in the
equation used to prescribe the motion of the shoreline.

Moreover, d〈P̂x〉/dt contributes less than 5% to the coefficient of term (III) of
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Wave type f Class
[4(dV̂ /dt)2]

(2〈Q̃〉2)

(I)

(IV)

(II)

(IV)

(III)

(IV)

R+dV̂ /dt

(III)

Bichromatic 0 A 0.0025 2.42 0.08 1.18 0.08
Bichromatic 0 B 0.0013 0.60 0.05 0.48 0.03
Bichromatic 0 C 0.0001 0.59 0.01 0.63 0.01

Bichromatic 0.5 A 0.0044 4.28 0.06 4.62 0.04
Bichromatic 0.5 B 0.0031 2.93 0.05 2.35 0.06
Bichromatic 0.5 C 0.0018 2.76 0.04 1.88 0.06

Bichromatic 1 A 0.0051 6.97 0.22 9.13 0.04
Bichromatic 1 B 0.0043 5.25 0.19 5.15 0.06
Bichromatic 1 C 0.0040 4.67 0.15 4.42 0.06

Irregular 0 A 0.0520 46.20 2.20 52.00 0.11
Irregular 0 B 0.0470 33.00 2.00 35.90 0.12
Irregular 0 C 0.0780 49.10 3.26 51.20 0.13

Table 1. Computed results.

equation (3.6c) for all the cases considered and, therefore, is neglected. Notice that
for perfectly symmetric swashes (with respect to the time of maximum runup) not
only is d〈P̂x〉/dt small but it can be shown that 〈P̂x〉 identically vanishes (see for
example the results computed by means of the Carrier & Greenspan (1958) solution
in Part 1). However, for the cases considered here, in which breaking and seabed
friction determine asymmetric swashes, numerical results show that 〈P̂x〉 does not
vanish although its time-derivative is small.

Other important computed results which synthetically describe the analysed flow
conditions are summarized in table 1. In each column the largest value of ratios
between the size (absolute value of the mean over each wave cycle) of contributions
to (3.6b) and (3.6c) is shown.

We gauge each contribution to (3.6c) by the value of the term (IV) which does
not contain the unknown d̄. The fourth column of table 1 shows that for all flow
conditions this almost (i.e. with discrepancies of less than 1%) coincides with 2〈Q̃〉2.
It is also clear that the contribution of (II) is at least ten times smaller than the
leading terms for all the test conditions considered (see sixth column of table 1)
and, as already mentioned, is taken as negligible. Moreover, we can also neglect the
R+d〈V̂ 〉/dt contribution to the coefficient of d̄ appearing in (3.6c) (see eighth column
of table 1).

Analysis of the table also reveals the important role of the friction contribution.
This is such as to modify the balance among the various terms of (3.6c). For f = 0
the balance is such that only (II) can be neglected, the other three terms being of
the same size, while for f = 0.5 the term (IV) becomes smaller (about one fourth)
than both (I) and (III). Finally, for f = 1 it would be possible also to neglect (IV)
the approximate balance being between (I) and (III). Similar findings are valid for
irregular waves even in the case of f = 0. These results are useful as a guide to
simplifying (3.6c) while retaining both unsteadiness of the motion of xl and allowing
for flows across the boundary. Retaining (IV) even for f > 0.5 and irregular waves:

dxl
dt

= ū = R+ − 2
√
gd̄3 + d〈V̂ 〉/dt

d̄
, (4.1a)
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Figure 3. (a, b) Comparison of the time series of d̄comp (solid line) and d̄eval (dashed line) for the

case ξm = 0.079, f = 0 (a) and ξm = 0.250, f = 0 (b). (c) Mean values of d̄comp vs. d̄eval for the cases
f = 0 (diamonds), f = 0.5 (triangles) and f = 1 squares. The dashed line gives a reference for the
case of perfect matching.

gd̄3 − 2[gα〈V̂ 〉+ 〈Υx〉 − 〈S̃〉]d̄− 2〈Q̃〉2 = 0. (4.1b)

In this case the coefficients of equation (4.1b) are only a function of the SW
motion. One first important consequence of the above is that (4.1b) is unaffected
by the positive Riemann invariant and the depth at the mean shoreline is only
imposed by the SW properties. This is in good agreement with the fundamental
assumption (see also Part 1) that the swash zone motion is entirely assigned to
SW contributions and that LWs only force the motion of the mean shoreline. One
practical implication is that standard techniques can be used to model the motion of
the mean shoreline (e.g. Bellotti & Brocchini 2001) but a non-zero depth is attained
at the mean shoreline which depends on the local SW conditions and is found by
solving (4.1b). Also, this finding is not surprising in view of the analysis performed in
Part 1 on the characteristics of mean shorelines. For example, figure 8 of Part 1 shows
the dependence on the wave amplitude of the mean water depth at the location given
by the phase-averaged waterline. However, that result is specific to the analytical
solution of Carrier & Greenspan (1958) while the result found here holds at xl and
is more general, also covering the case of breaking waves.

Results of the comparison between the value of d̄ determined from the numerical
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Figure 4. Fitting of SW properties. (a)–(d ) The first four properties of equation (5.1):

〈V̂ 〉, 〈Q̃〉, 〈S̃〉 and 〈Υx〉 respectively.

solution of the NSWE (d̄comp) and that evaluated by equation (4.1b) (d̄eval) are reported
on figure 3. Panels (a) and (b) show the comparison of the time series of the functions
for two specific tests while panel (c) collects the mean values of both signals for all
the cases considered here. The latter plot shows that d̄eval overpredicts d̄comp (symbols
are above the straight line of reference) by about 5%–15%; however a good overall
agreement exists between the two data sets. The overprediction weakly depends
on f and an improving agreement is achieved for increasing values of d̄, i.e. for
increasing ξm.

5. Implementation of the SBCs
As already mentioned, in principle conditions (3.6) could be directly implemented

in available solvers but we prefer to discuss use of the simplified conditions (4.1)
as they are more amenable to analytical treatment and more suited for illustration
purposes.

The main problem in implementing SBCs is to suitably predict d̄(xl) on the basis
of local (computed at xl) SW conditions. This requires a good prescription of the
SW coefficients of equation (4.1) in terms of the local wave parameters (H,T ), of α
and f.

Dimensional arguments and analytical results based on the Carrier & Greenspan
(1958) solution (e.g. Mei 1989, pp. 524–527) and the Shen & Meyer solution (e.g.
Peregrine & Williams 2001) suggest that the swash zone width scales with H/α
while, in very shallow water, the most suitable scale for the water depth is H . Hence
according to (2.1a) 〈V̂ 〉 scales with H2/α. Definition (3.2a) suggests that 〈Q̃〉 scales
with the product of the scale for the onshore velocity of the SW (in shallow water√
gH) times the scale for the fluctuation of the water depth (H). In shallow water the
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radiation stress 〈S̃〉 is suitably scaled with gH2 and it is easy to show that 〈Υx〉 scales
with fgH2, hence

〈V̂ 〉 = CV
H2

α
, 〈Q̃〉 = CQ

√
gH3, 〈S̃〉 = CSgH

2, 〈Υx〉 = CΥgH
2,

d〈V̂ 〉
dt

=
2CVH

α

dH

dt
,

(5.1)

with

CV = 0.615− 0.201f, CQ = 0.356− 0.273
√
f, CS = 0.792− 0.574

√
f, CΥ = −0.034f.

(5.2)

These values, obtained from fitting (with a regression coefficient ranging between
0.94 and 0.99 as shown in figure 4) a large number of solutions, give an excellent
representation of the SW properties of (5.1) over a wide range of H,T , α and f.
Hence, the coefficients of (3.6b) can be directly referred to the local height of the SWs
by substitution of (5.1), into (4.1b):

d̄3 − 2(CV + CΥ − CS )H2d̄− 2C2
QH

3 = 0. (5.3)

This equation is amenable to simple, analytical solution (see Abramowitz & Stegun
1964). First, the condition

[C4
Q − 8

27
(CV + CΥ − CS )3]H6 > 0 (5.4)

valid for f < 0.5, states that equation (5.3) admits one real and two complex conjugate
roots. The real root is then computed to give

d̄ = [(1 + F)1/3 + (1− F)1/3]C
2/3
Q H where F =

√
1− 8(CV + CΥ − CS )3

27C4
Q

. (5.5)

Substitution for CV , CQ, CS and CΥ gives the desired solution:

0.45H 6 d̄ 6 0.55H for 0 6 f 6 0.5. (5.6)

This almost coincides with the range 0.48H 6 d̄ 6 0.53H derived from the fully
numerical solution of the NSWE, demonstrating again both the validity of the
chosen SBCs and of the chosen simplifications. Both the analysis of the previous
section and equation (5.4) suggest that for f > 0.5 the second-order equation

d̄2 − 2(CV + CΥ − CS )H2 = 0 (5.7)

can be used to obtain d̄ =
√

2(CV + CΥ − CS )H which approximately ranges between
0.48H and 0.58H for 0.5 6 f 6 2. Larger values of f would be too far outside
the range considered in the computations and regressions would not be appropriate.
However, all the evidence suggest that for 0 6 f 6 2 we can assume d̄ ≈ H/2 with
good approximation.

In summary a simple ‘recipe’ is suggested to prescribe the SBCs. The motion of the
mean shoreline is given by equation (4.1a) in which the rate of change of the volume
in the swash zone, related to the local SW height through equation (5.1), acts to
decelerate the shoreline motion during the runup and accelerate it during rundown.
At the mean shoreline the mean water depth is computed to be about half of the
local SW height.

If this is applied the following expressions can be used as a good approximation of
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the SBCs for the wave-averaged water flows:

dxl
dt
≈ R+ −

√
2gH − 4CV

α

dH

dt
, d̄(xl) ≈ H

2
, ū(xl) ≈ R+ −

√
2gH. (5.8)

On the other hand, as suggested in Part 1, SW models may be chosen to permit the
reflection of SW at xl , i.e. by using relationships like those of equation (3.8).

Numerical investigation is currently underway to implement this ‘recipe’ in an
available wave-averaged solver and preliminary results reveal that an accurate com-
putation of R+ at xl is the most crucial issue for correctly predicting the motion of the
mean shoreline. In order to confirm the validity of our analysis we are also planning
to verify our findings on the basis of experimental evidence. At that stage it will also
be necessary to take into account the different generation mechanisms (disregarded in
the present analysis) of the shoreline low-frequency motion (‘surf beat’). Preliminary
analysis of new experimental data on surf beat generation by a time-varying break-
point (Baldock et al. 2000) suggests our analysis is likely to be valuable for modelling
those flow conditions: examples of experimental shoreline motion (e.g. figure 5b of
Baldock et al. 2000) are surprisingly similar to our computed curves (e.g. figure 2).

Support from the European Union through the contract EVK3-2000-00037 (HU-
MOR) is acknowledged. Thanks are also due to the reviewers for their stimulating
comments and for their suggestions which helped improve the clarity of presentation.
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Özkan-Haller, H. T. & Kirby, J. T. 1997 Nonlinear evolution of shear instabilities of the longshore
current: A comparison of observations and computations. J. Geophys. Res. 104, 25953–25984.

Peregrine, D. H. & Williams, S. M. 2001 Swash overtopping a truncated plane beach. J. Fluid
Mech. 440, 391–399.

Puleo, J. A. & Holland, K. T. 2001 Estimating swash zone friction coefficients on a sandy beach.
Coastal Engng 43, 25–40.

Shah, A. M. & Kamphuis, J. W.1996 The swash zone: a focus on low frequency motion. Proc. 25th
Intl Conf. Coastal Engng, ASCE, vol. 2, pp. 1431–1442.

Van Dongeren, A. R. & Svendsen, I. A. 2000 Nonlinear and quasi 3-D effects in leaky infragravity
waves. Coastal Engng 41, 467–496.

Watson, G., Barnes, T. C. D. & Peregrine, D. H. 1994 The generation of low frequency waves
by a single wave group incident on a beach. Proc. 24th Intl Conf. on Coastal Engng, ASCE,
vol. 1, pp. 776–790.


